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Abstract. We have formulated and analysed a model of transverse self-sustained pattern form-
ation in a photoexcited and voltage-biased quantum well (QW) structure. Our model explains
the formation of patterns of quasi-neutral two-dimensional electron–hole plasma whose intrinsic
bistability was shown in recent experiments.

A number of patterns containing regions with different spreading of the electron and hole
wave functions and different densities of the two-dimensional electron–hole plasma have been
found by using a nonlinear interband light-absorption model. When the transverse extent of the
QW layer is large in comparison with the pattern characteristic transverse length scale (of the order
of the two-dimensional plasma ambipolar diffusion length), most patterns consist of wide plateaus
with high (low) plasma density and relatively narrow domains with low (high) density.

1. Introduction

Recently, electro-optical effects in quantum heterostructures have attracted much attention
because of some new unique features of confined electrons [1–7] and numerous device
applications based on these effects [8–14]. Among the typical applications of such devices are
light modulators, infrared detectors, and other switching devices.

We will focus on the experiments presented in references [1–3] on single- and multiple-
quantum-well (QW) GaAs–AlxGa1−xAs heterostructures exposed to an external electric
field and to a monochromatic photon source under low-temperature conditions (2–4 K).
These experiments revealed interesting phenomena such as bistability, quasi-neutral plasma
domains‖, negative differential capacitance and nonlinear screening.

Our aim is to present a model to explain the appearance of quasi-neutral plasma domains in
a photoexcited and voltage-biased QW (vertical dimension≈ 100–200 Å). Preliminary results
were reported in [15], and in [16], where they were explained in terms of a quantum-confined
Stark effect in these structures. The geometry of the problem consists of a single GaAs QW of
width 2d subject to a constant electric field due to uniformly distributed charges of a parallel-
plate capacitor. The distance between the capacitor plates is 2dc, such thatd � dc, and the
field is parallel to the direction of vertical growth of the sample. Furthermore, a uniform
monochromatic photon source photoexcites the QW (see figure 1). Investigating the red-shift

§ Author to whom any correspondence should be addressed.
‖ Although in the cited references, the term ‘charge-density domains’ is used to describe the quasi-neutral two-
dimensional electron–hole plasma, we prefer the term ‘quasi-neutral plasma domain’ or ‘plasma domain.’
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Figure 1. The geometry under consideration. We show a single QW layer of width 2d and the
capacitor plates (contact regions), to which an external voltage is applied. The sample is exposed
to a uniform illuminationI0. The electric field is in the vertical (z-axis) direction.

of Raman scattering data, the simultaneous existence of two sets of coupled plasmon modes
was noticed. This indicates the formation of plasma domains with different electron–hole
concentrations (see [1–3], and references therein). This is a single-well phenomenon, and
differs from resonant tunnelling [17–20]. However, similar bistable phenomena were found
in reference [21] for an InAlAs/InGaAs superlattice embedded in a p–i–n structure.

Our approach is based upon consideration of the widely separated characteristic length
scales which are involved in the problem. There are six important length scales: the screening
length of the two-dimensional (2D) electron–hole gas (lsc, related to the semiconductor
properties and Poisson’s equation; reference [22] shows thatlsc ∼ a∗, the effective Bohr
radius), the well width (2d), the characteristic transverse electron wavelength (λdB , the
de Broglie wavelength in the transverse direction), the ambipolar diffusion length (LD =√
DτR, which is the characteristic length scale of the transverse patterns;D is the ambipolar

diffusion coefficient andτR is the recombination time), the well transverse dimension (Lx), and
the distance between the capacitor plates (2dc). For a typical experiment with a GaAs sample,
the following relations hold:Lx � dc > LD � λdB, d, lsc (for example:Lx ≈ 100–200µm;
2dc ≈ 0.5–1µm [23]; LD ≈ 0.2–0.5µm; λdB ≈ 600 Å; 2d ≈ 200 Å; lsc ≈ 100 Å). The
inequalitydc > LD � d allows us to neglect nonuniformities in the electric charge induced
on the capacitor plates by the patterns, as will be shown in section 3.4. Thus it can be assumed
that the external electric field is uniformly applied throughout the sample. The motions in the
vertical and transverse directions are uncoupled because the ratioθ = d/LD is very small and
LD is much larger thanλdB andlsc. Motion in the vertical direction is quantized (λdB ∼ d),
and we can find the discrete energy levels as functions of the electron and hole concentrations
by using the Hartree approximation in the coupled Schrödinger–Poisson system [22]. We can
analyse the electron–hole relaxation and transverse transfer by means of semiclassical drift–
diffusion equations [14, 24–27]. An important simplification is the ‘quasi-neutrality’ of the
system, which follows fromθ2� 1.

Our analysis indicates that there may be different patterns in the QW transverse direction
when the electro-optical absorption process is in its bistable regime. The patterns consist
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of high- and low-plasma-concentration domains (corresponding to weak and strong electro-
absorption respectively), separated by transition regions of widths of the order ofLD.

The results of our work are presented in two papers. This paper introduces the basic
equations of the model and the main simplifications imposed to study the resulting problem.
We include as well the analysis of the bistable regimes in homogeneous 2D plasma, and the
possible patterns for QWs with infinite transverse extensions. In the second paper we will show
how these patterns can be controlled by the boundary conditions in the transverse direction,
and will analyse their stability and dynamical behaviour. Thus the conditions for experimental
detection of the patterns can be established.

2. Model and basic equations

Let us consider a heterostructure with a single QW layer of thickness 2d. Define a coordinate
system with thex- andy-axes lying in the plane of the layer, and thez-axis perpendicular to
it (see figure 1). The transverse dimensions areLx andLy , much larger thand. We apply to
the QW a constant electric field (E) due to uniformly distributed charges of a parallel-plate
capacitor in thez-direction, and a transversely uniform monochromatic photon source. As
mentioned in the introduction, there is no influence of the patterns in the charge distribution
of the capacitor plates. This assumption will be justified later.

Since the transverse nonuniformities are very smooth in comparison with the thickness
2d and the de Broglie wavelengths of the electrons and holes, we can concentrate on the
wave functions and energies corresponding to the quantization of the carriers in the well. The
transverse electron motion is assumed to be entirely classical. We assume that the effective
masses of electrons and holes, are equal† and the QW is infinitely deep. The latter is assumed
to simplify our calculations, and can be justified by considering that our typical ground-state
energies are of the order of 10 meV (see table A1 in the appendix and figure 2), whereas
the barrier height is 300–400 meV [28]. Then, the Schrödinger equation in the Hartree
approximation [22] and its boundary conditions take the form

− h̄
2

2m
139e,h(x, y, z)∓ (V (x, y, z)− eEz)9e,h(x, y, z) = Ee,h9e,h(x, y, z)∫ d

−d
dz

∣∣9e,h(x, y, z)∣∣2 = 1

9e,h(x, y, z = ±d) = 0

(1)

where ‘−’ (‘+’) corresponds to electrons (holes),Ee (Eh) is the electron (hole) subband energy,
andV = e8 (e > 0), 8 being the Hartree potential originating from the electron–hole
plasma. We anticipate that the leading-order approximation to9e,h will be independent
of the transverse coordinatesx, y due to the assumed large aspect ratiosLx,y/d. Then the
normalization condition is such that|9e,h|2 is a linear probability density.V is a function
of the transverse coordinates; thus the leading-order approximations to9e,h andEe,h depend
parametrically on them.

The Hartree potential8 obeys the three-dimensional Poisson equation, and thereforeV

can be expressed as

13V = e2

ε0
(N |9e|2 − P |9h|2) (2)

† The analysis of the system with different effective masses leads to results which are not qualitatively different from
those presented here.
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whereε0 is the dielectric constant of the material andN (P) is the two-dimensional density of
electrons (holes). We have assumed that only the lowest e and h subbands are populated. This
approximation is easily seen to be justified by studying the excited energy levels of electrons
and holes when compared to their Fermi level. As boundary conditions for (2), we require that
V is constant far away from the well layer.

For the transverse redistribution of electrons and holes, we use the drift–diffusion equations
[14,24–27]:

∂N
∂t

+∇2 · Jn = G −R (3)

∂P
∂t

+∇2 · Jp = G −R. (4)

HereJn andJp are two-dimensional fluxes for both types of carrier:

Jn = −µnN
(
− 1

e
Fn
)
− Dn∇2N (5)

Jp = µpP
(

1

e
Fp
)
− Dp∇2P (6)

whereµn,p andDn,p are the mobility and diffusion coefficients,∇2 = i ∂/∂x + j ∂/∂y, and
Fn,p are the forces acting on the two-dimensional electrons and holes, respectively.G andR
are the rates of photogeneration and recombination (both will be specified later).

Regarding the forcesFn,p, we should recall that the concepts of two-dimensional electrons
and holes are introduced because the electrostatic potential is a smooth function of the
transverse coordinates. Then the energies of the two-dimensional subbands are functions
of these coordinates (in our caseEe(x, y), Eh(x, y)), and to leading order we can neglect the
intersubband transitions induced by the potentials. Thus the quasi-classical transverse motion
of the carriers occurs in a potential landscape given byEe,h(x, y). Once the latter are known,
the forces acting on the carriers are [14]

Fn = −∇2Ee Fp = −∇2Eh. (7)

Equations (3) and (4) should be supplemented with appropriate boundary conditions at
the edges of the QW layer. In particular, we can set the total transverse current to zero:

e(Jp −Jn)norm= 0 (8)

and suppose that at the edges there is a finite rate of electron–hole recombination:

(Jn)norm= SN (9)

where(Jn)norm means the component of the electron flux perpendicular to the edges.S > 0
is the ‘edge recombination velocity’†.

Table 1 and table 2 present the dimensionless variables and parameters which we will use
to transform our equations to dimensionless form. Note that in the following, we will use that
the inverse aspect ratioθ is a small parameter (see table A1 in the appendix):

θ � 1. (10)

† S is entirely analogous to the surface velocity of recombination, which is used to describe electron–hole
recombination near interfaces of bulk-like semiconductors. In interfaces of bulk semiconductors,S is generally
dependent on the position in the edge. In our case, it will be constant. These boundary conditions are relevant for the
second paper of this work.
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Table 1. Dimensionless variables.

Variable Dimensionless form Constant

Electric field q = E
E0

E0 = E0

ed

Electron and hole subband energies εe,h = Ee,h

E0
E0 = h̄2

2md2

Electron and hole 2D concentrationsn = N
N 0

, p = P
N 0

N0 = ε0E0

e2d

Electron and hole wave functions ψe,h =
√
d 9e,h

Hartree potential energy v = V

E0

Light intensity i = Iω

I0
I0 = ε0E0h̄ω

e2dτRA0

Time τ = t

τR

Transverse well dimension L = Lx

LD

a

x-coordinate ξ = x

LD

a

y-coordinate η = y

LD

a

z-coordinate ζ = z

d

a LD is defined in the body of the text (LD =
√
D0τR , with D0 = [2β/(1 +β)]E0µn/e), and

represents the length scale of the patterns in the transverse direction of the QW. The latter will be
represented by a vectorr whose components are the transverse coordinates in dimensionless form,
i.e.r ≡ (ξ, η).

Table 2. Dimensionless parameters.

Parameter

θ = d

LD

β = µp/µn

λ = πε0h̄
2

me2d

γ = µ0E0τR

eL2
D

a

a µ0 represents the reference mobility defined in section 2.2.

2.1. Simplification and solution of the Schrödinger–Poisson system

In dimensionless form, the Schrödinger and Poisson equations (1) and (2) may be written as
follows (see table 1):(
∂2

∂ζ 2
+ θ212 + εe,h ± v(ζ ; r, τ )∓ qζ

)
ψe,h(ζ ; r, τ ) = 0 (11)(

∂2

∂ζ 2
+ θ212

)
v(ζ ; r, τ ) = n(r, τ ) + p(r, τ )

2
(|ψe(ζ ; r, τ )|2 − |ψh(ζ ; r, τ )|2)

+
n(r, τ )− p(r, τ )

2
(|ψe(ζ ; r, τ )|2 + |ψh(ζ ; r, τ )|2). (12)
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Here12 is the two-dimensional Laplacian. The wave functions are adiabatical functions ofr

andτ because the potential is a functional of the electron and hole densities.
We obtain the important quasi-neutrality relation betweenn andp by integrating (12) with

respect toζ and using (i) the normalization conditions forψe,h, and (ii) the boundary condition
that the potential is a constant far from the QW (we assume smoothness of the solutions to our
problem):

n(r, τ )− p(r, τ ) = O(θ2) (13)

asθ → 0†. The leading-order approximations to equations (11) and (12) obey the system(
∂2

∂ζ 2
+ εe,h ± v(ζ ; n)∓ qζ

)
ψe,h(ζ ; n) = 0 (14)

∂2

∂ζ 2
v(ζ ; n) = n(|ψe(ζ ; n)|2 − |ψh(ζ ; n)|2) (15)

to be solved with the boundary and normalization conditions previously discussed. Notice
that the wave functions, the energiesεe,h, and the Hartree potential depend on the transverse
coordinates and time through their dependence on the electron densityn(r, τ ) inside the
QW layer. Our leading-order approximation yields the same equations for the Schrödinger–
Poisson problem as in the one-dimensional theory of [3]. However, the quasi-neutrality of the
electron–hole plasma is derived in our theory (rather than assumed), which moreover describes
the transverse plasma motion (see details below).

The approximate system (14) and (15) possesses the following symmetry properties:

v(ζ ; n) = −v(−ζ ; n) ψe(ζ ; n) = ψh(−ζ ; n). (16)

Thus, to leading-order approximation, the Hartree potentialv is

v(ζ ; n) = v0(ζ ; n) + φ(r, τ ) + O(θ) − 1< ζ < 1 (17)

v0(ζ ; n) = n
∫ 1

−1
dζ ′ K(ζ, ζ ′)

∣∣ψe(ζ ′; n)∣∣2 (18)

where

K(ζ, ζ ′) ≡ 1

2
(|ζ − ζ ′| − |ζ + ζ ′|).

Here n(r, τ ) and φ(r, τ ) are as-yet unknown functions independent ofζ which will be
determined later.

The Hartree potential (17) and the symmetry properties (16) allow us to findψe,h by
solving the following single Schrödinger equation:

d2ψ

dζ 2
+ (ε + v0 − qζ )ψ = 0 (19)

where

ψ(±1) = 0
∫ 1

−1
|ψ(ζ ; n)|2 dζ = 1.

We obtain for electrons and holesψe = ψ(ζ ; n),ψh = ψ(−ζ ; n), respectively. The eigenvalue
ε depends parametrically onn(r, τ ) and we have

εe(r, τ ) = −φ(r, τ ) + ε(n(r, τ )) εh(r, τ ) = φ(r, τ ) + ε(n(r, τ )). (20)

Equation (19) is the same as equation (3) of reference [3]. However, equation (20) shows
that there is a difference 2φ(r, τ ) between the energies of holes and electrons corresponding

† This fact will allow us to use plasma and electron concentrations as equivalent terms for the rest of the paper.



Pattern formation under bistable electro-optical absorption: I 6401

to an additional Hartree potential drop due to the transverse carrier motion. This potential drop
depends on the transverse patterns of the plasma and it will be calculated later.

The solutions of equation (19) were found by means of a variational method. We intro-
duced a functionalH{ψ}, corresponding to equation (19), and used as trial functions a set of
orthogonal polynomials in the interval [−1, 1]. Figure 2 depicts the energyε as a function of
the plasma densityn for different values of the electric fieldq. The increase in the electron and
hole energies with carrier concentration arises, obviously, from the screening of the applied
field.
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Figure 2. The dependence of the renormalized energyε on the plasma concentration at different
dimensionless electric fields (q = 2, . . . ,12). The minimum of the functionalH{ψ}, used to
calculateε, is shown as well.

2.2. Transverse transfer and relaxation of photoexcited carriers

We now determine the second contribution to the Hartree potential,φ, and the electron density,
n, from the drift–diffusion equations (3) and (4) written in dimensionless form as

∂n

∂τ
+ γ∇r ·

{
µn

µ0
[n∇r(φ − ε(n))− α(n)∇rn]

}
= G −R
N0/τR

(21)

∂p

∂τ
− γ∇r ·

{
µp

µ0
[p∇r(φ + ε(n)) + α(n)∇rp]

}
= G −R
N0/τR

. (22)

In these equations, carriers move on the plane due to the forces (7), which can be calculated
using the energies (20). Note that the potentialsv0 andφ generate the forces acting on the
electrons and holes in different ways. The potentialv0 generates equal forces for both types of
carrier through the dependenceε(n), whilst the potentialφ(r) generates oppositely directed
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forces:

Fe = −E0

LD
∇r(ε(n)− φ) Fp = −E0

LD
∇r(ε(n) + φ) (23)

which lead to the separation of the carriers in the plane layer.
In equations (21) and (22), we have defined the functionα(n) = eDn,p/E0µn,p, which

does not depend on the type of the carriers (n or p) and can be easily found from the Einstein
relation.

The charge continuity equation is obtained by subtracting (22) from (21). Inserting the
quasi-neutrality condition (13) in the result we find

∇r ·
{
µn

µ0
[(1 +β)n∇rφ − (1− β)(n∇rε + α(n)∇rn)]

}
= 0. (24)

Equation (24) can be integrated once with the help of (8), thereby providing the following
equation forφ(r, τ ):

∇rφ = 1− β
1 +β

(
α(n) + n

∂ε(n)

∂n

)
1

n
∇rn. (25)

Equation (25) can be readily solved:

φ(n) = 1− β
1 +β

(∫ n α(n) dn

n
+ ε(n)

)
+ constant. (26)

Thus oncen(r, τ ) is known, we can calculate the electrostatic potential in the QW,v(ζ ; n).
To write down explicitly the equation forn, we shall specify the generation and recom-

bination rates as

G = A(n, q, ω) Iω
h̄ω

R = N
τR

(27)

whereIω is the intensity of the incident light (constant, i.e. independent of the transverse
coordinates),A is the absorption factor, dependent onn andq throughout the energy spectrum
of the carriers, andτR is the recombination time, which is assumed to be independent ofn. To
obtain the final nonlinear equation forn, we must add the drift–diffusion equations (21) and
(22), use the quasi-neutrality condition (13), and define the reference mobility

µ0 = 2µnµp
µn +µp

= 2β

1 +β
µn.

The result is
∂n

∂τ
−∇r · {D(n, q)∇rn} = a(n, q, ω)i − n ≡ R(n, q, ω, i) (28)

where the dimensionless light intensityi is defined in table 1 and we have used the notation
a = A/A0 (A0 is the maximum absorption). In (28) we have defined a ‘diffusion-like’
coefficientD, a function of the plasma concentrationn and the electric fieldq, as

D(n, q) ≡ α(n) + n
∂ε(n, q)

∂n
. (29)

It is important to notice that the diffusion coefficientD(n, q) is strictly positive for alln > 0.
In fact, it can be shown thatα(n) > 0, whereas figure 2 shows that the energyε is an increasing
function ofn.

The characteristic length defined by (28) is

LD =
√
D0τR with D0 = 2β

1 +β

E0µn

e
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(the latter coincides with the diffusivity of a degenerate plasma with Fermi energy equal to
E0). With this definition,γ = 1 in equations (21) and (22), which is whyγ does not appear
in equation (28).

Let us restrict consideration to patterns which depend on a single transverse coordinate,
let us sayξ . Then (28) leads to

∂n

∂τ
− ∂

∂ξ

{
D(n, q)

∂n

∂ξ

}
= a(n, q, ω)i − n ≡ R(n, q, ω, i). (30)

Equation (30) reduces to the rate equation model used in reference [3] for coordinate-
independent electron densities. The boundary condition (9) is transformed into

jn = −D(n, q)∂n
∂ξ
= ±s(±)n (31)

wheres = SLD/D, and the signs± correspond to the right and left edges of the QW layer:

ξ (±) = ±Lx/2
LD
= ±1

2
L.

2.3. Model of absorption

Generally, the bistable regimes arise if the absorption factorA(n, q, ω) is a superlinear function
of the plasma concentration and the right-hand side of equation (30) has several solutions at
fixed q. Several of our results do not require specification ofA(n), but for our numerical
results we follow papers [1–3] and suppose that the absorption is due to the generation of
excitons, i.e., the bound and continuum states of electron–hole pairs. The Coulomb attraction
between an electron and a hole leads to a hydrogen-like resonance spectrum below the band-gap
energy. These excitons are associated with the two-dimensional electron and hole subbands.
A fast exchange between the excitons and the electron–hole states is supposed; thus we can
characterize the system by the electron and hole concentrations. In the case of deep QWs and
a large exciton radius, the exciton energyEex follows the positions of the electron and hole
subbands. LetEg be the optical band gap in the QW material; then the resonant absorption
corresponds to the energyEg+En+Ep−Eex and depends on the carrier concentration through
En,p. Assuming a Lorentz shape of the absorption factor as a function of the photon energy
h̄ω, we can write

A(n, q, ω) = A0a(n, q, ω) a(n, q, ω) = 32

(ε(n, q)−1)2 +32
(32)

where1 = −(Eg − Eex − h̄ω)/2E0 is the detuning of the photon energy, and3 is the
dimensionless bandwidth of the exciton in units of 2E0. The exciton bandwidth is typically in
the range of a few meV. It is obvious that for the shape of the absorption (32) the right-hand
side of equation (30) can have more than one solution at a detuning1(ω) > ε(0, q). With this
formula for the absorption we complete the model and the basic equations for the patterns.

3. Analysis of stationary patterns

The analysis of stationary patterns will be focused on one-dimensional patterns. We will
find the singular points of the stationary equation of (30), we will study the behaviour of
the solutions near those points, and we will consider the patterns that appear for transversely
infinite samples.

Notice also that the following analysis will consider several parameters of our problem as
fixed constants: the electric fieldq, the frequency of emission of photonsω, the light detuning
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1(ω), and the temperatureT . Thus the main variable is the plasma concentrationn that will
depend on the light intensityi and the transverse coordinateξ . The influence of the sample
transverse dimensionsL and the edge recombination ratess± will be studied in the second
paper of this work.

3.1. Stationary patterns and singular points

The steady solutions of equation (30) solve a second-order nonlinear parabolic differential
equation with mixed boundary conditions, which may be solved by phase plane methods (see
related studies in references [29,30]). This equation is

− d

dξ

{
D(n)

dn

dξ

}
= R(n, i)

or
d

dn

{
1

2
D2(n)k2(n)

}
= −D(n)R(n, i) ≡ 0(n, i) (33)

wherek ≡ dn/dξ . The singular points of equations (33) are given by the algebraic equation

R(n∗; i) = 0 (34)

which will give one, two or three solutions depending upon the value of the light intensity
i. Figure 3 depicts the solutions of the equation. Notice the existence of two critical light
intensity values (il andih) where the generation and recombination rates are tangent. These
values delimit the range of bistability(il, ih). In this interval, there exist three solutions of

0 1 2 3 4 5 6 7 8 9 10 11 12
Plasma Concentration n

0.0

0.2

0.4
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n)

,n
/i
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λ=0.25
Λ=0.2
∆=1.6
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i l ik
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Figure 3. Bistability regions at fixed electric field. The plots show the dimensionless generation
and recombination rates by depicting the absorption coefficienta (Lorentzian curve), and the ratio
n/i (straight lines whose slope decreases when the light intensity increases). It is clear that there
exist two light intensity valuesil andih where both curves are tangent and (34) has two solutions.
In the range(il , ih), there are three solutions of (34) and bistability occurs. The critical valueik is
explained in the text and the parameter values are written down in the body of the figure.
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equation (34), which we will denote asn∗ = n1, n2, n3. The character of these singular points
is different, and will determine the bistable behaviour of the patterns.

3.1.1. Behaviour near singular points.When|n − n∗| � 1, we can use the approximation
0(n) ≈ 0′(n∗)(n− n∗), where

0′(n∗) = − {D′(n∗)R(n∗) +D(n∗)R′(n∗)
} = −D(n∗)R′(n∗). (35)

Thus, we obtain

d

dn

{
1

2
D2(n)k2(n)

}
= −D(n∗)R′(n∗)(n− n∗) (36)

and integrating:

D2(n)k2(n) = −D(n∗)R′(n∗)(n− n∗)2. (37)

It is easily seen from figure 3 thatn1 andn3 are saddle points (R′(n∗) < 0), andn2 is a centre
(R′(n∗) > 0). Whenn∗ = n1, n3, we obtain from equation (37) the behaviour of the solution
near saddle points:

k(n) ≈ ±
√
D(n∗)|R′(n∗)|
D(n)

(n− n∗) |n− n∗| � 1. (38)

However, in the case wheren∗ = n2, we must linearize equations (33), obtaining

−D(n2)
d2n

dξ2
= R′(n2)(n− n2) |n− n2| � 1

d2n

dξ2
+
R′(n2)

D(n2)
(n− n2) = 0

d2n

dξ2
+�2(n− n2) = 0. (39)

The solution of this equation is

n− n2 = a0 sin(�ξ + ϕ) where� =
√
R′(n2)/D(n2).

And the resulting minimum period is

ξmin
p = 2π

√
D(n2)

R′(n2)
. (40)

3.1.2. Critical intensity and phase portraits.A first integral of the stationary equations (33)
is

1

2
D2(n)

(
dn

dξ

)2

+U(n, i) = C1 whereU(n, i) =
∫ n

n1

dn′ R(n′, i)D(n′). (41)

Then the solutions are implicitly given by

±
∫ n D(n′) dn′√

2(C1− U(n′))
= ξ +C2 (42)

whereC1 andC2 are constants.
There exists a critical value for which there are two heteroclinic orbits connecting the two

saddle points. This value is easily obtained from equation (41), via the equality

U(n3(ik), ik) = 0. (43)
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This equation is clearly a modified ‘equal-area rule’ [31, 32].ik divides the interval [il, ih]
(on whichn(i) is multivalued) into two subintervals, [il, ik) and(ik, ih]. On each subinterval
the phase portrait is similar: one of the saddles has a homoclinic orbit enclosing the centre.
Wheni ∈ (il, ik), the homoclinic orbit belongs to(n3, 0), whereas it belongs to(n1, 0) when
i ∈ (ik, ih). Figure 4 depicts these phase portraits for some typical intensity values (il < i < ik
(a), i = ik (b), andik < i < ih (c)) together with the singular points of (34).

n
1

n
1

n
1

n
2

n
2

n
2

n
3

n
3

n
3

Figure 4. Phase portraits foril < i < ik (a), i = ik (b), andik < i < ih (c). The curves depicted
are the separatrices; no other trajectories are portrayed. Diamonds represent the singular points
(n1, 0), (n2, 0), and(n3, 0).

3.2. Transverse patterns for infinite QWs

The solutions of the boundary value problem may be easily visualized by means of the phase
portrait analysis. Let us study the case withL = ∞. Bounded solutions for allξ correspond
to homoclinic, heteroclinic, or closed orbits. Closed orbits correspond to periodic plasma
densitiesn(ξ). Wheni ∈ (il, ik) (i ∈ (ik, ih)), the solution corresponding to the homoclinic
orbit represents a domain of depleted (high) plasma concentration on a medium of high (low)
density (see figure 5(a) and figure 5(c), respectively). For the special casei = ik the heteroclinic
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Figure 5. Three basic types of pattern for infinite dimension of the QW layer. (a) corresponds to
the interval [il , ik), (b) corresponds toi = ik , and (c) corresponds to the interval(ik, ih].

orbits connecting the two saddles represent coexistence of spatially separated low- and high-
density plasmas. Two symmetric patterns are possible as shown in figure 5(b) (‘kink-like’
patterns).

3.3. Radially symmetric patterns

It is interesting to notice that we found also patterns with radial symmetry. These patterns
arise as a result of expressing (28) in polar coordinates with its radially symmetric form:

∂n

∂τ
− 1

r

∂

∂r

{
rD(n, q)

∂n

∂r

}
= R(n, q, ω, i) (44)

wherer is the radial coordinate.
In this case we found similar structures to those of figure 5. Figure 6 presents two of those

solutions foril < i < ik (a), andik < i < ih (b). Both curves represent radial anti-soliton
and soliton patterns: (a) is a low-absorption spot in a high-absorption environment, and (b) is
a high-absorption spot in a low-absorption environment.
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Figure 6. Radially symmetric stationary patterns foril < i < ik (a) andik < i < ih (b). Both
cases present patterns in the form of radial anti-soliton and soliton.n1, n2, andn3 represent the
solutions of equation (34).

Notice that we have presented and discussed the patterns in terms of redistribution of
the plasma over the QW layer. The above results can be used to find the wave function
spreading across the well [16] and the three-dimensional configuration of the electrostatic
potential between the capacitor plates.

3.4. The configuration of the external electrostatic potential

The potential distribution outside the QW is a solution of the Laplace equation (there is no
net charge density outside) in the two strips of the plane (ξ, Z), Z = θζ , limited by both
capacitor plates and both QW edges. The electrostatic potential between the capacitor plates
and the corresponding QW edge can be calculated analytically [33]. It is a functional of the
potential (17) induced by a pattern. The numerical evaluation of the electrostatic potential
yields figure 7 for the pattern distribution of figure 5(a) (we have subtracted the contribution
of the external field for the sake of clarity). Notice that the potential distribution due to the
pattern has a value of a few millivolts at distances of the order ofLD, and vanishes when
Z > LD. We verified and confirmed our assumption about the uniform distribution of the
electric field throughout the QW because the disturbance of the external potential originating
from the plasma redistribution within the QW disappears in distances of the order ofLD, and
this disturbance is negligible when compared to the potential due to the capacitor plates.
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Figure 7. The dimensionless potential distribution outside the QW due to the pattern configuration
of figure 5(a), where we have not included the contribution of the external electric field. The
distance between the plates is 1µm. Notice the step-like jump in the potential at the positions
Z ≡ θζ = ±θ , which correspond to the QW edges; thus on theZ-scale, the QW has almost
negligible width.

4. Conclusions

The bistable behaviour of electro-optical effects may appear in different heterostructures in
diverse electrical and optical regimes: photoexcited QW structures in an external electric
field [1–3], superlattices embedded in p–n junctions [21] (for both cases, vertical current is
not needed), self-electro-optical effect devices [8–14] (where the external circuit controls the
effect), etc. In fact, all these structures are layered systems with local feedback in which
bistability should induce formation of transverse patterns.

In this first part of our study we have formulated and analysed a model of pattern
formation in a GaAs QW heterostructure under bistable electro-optical absorption. The
model includes: self-consistent calculations of the wave functions and subband energies of
the photoexcited electrons and holes in an strongly biased QW, nonlinear interband light
absorption, the configuration of the electrostatic potential, its screening, and the transverse
motion of the two-dimensional electron–hole plasma. The vertical and transverse motions of
the carriers arestrongly coupleddue to the electrostatic interaction. However, the separation
in the scales of transverse and vertical effects (see section 1) allowed us to consider them
separately to leading-order approximation, and to establish the quasi-neutrality of the electron–
hole plasma. A consequence of the carrier-density dependence of the subband energies is the
unexpectedly large renormalization of the diffusion coefficient (through the density-dependent
forces appearing in the ambipolar drift–diffusion equation) in the resulting boundary value
problem (30) and (31). The transverse redistribution of the carriers induces the electrostatic
potential, and adiabatically drives the electron and hole wave functions, and the subband
energies.
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The second part of our work will present a more detailed discussion of the results for
patterns in QWs of finite transverse dimension and their stability.

Acknowledgments

We thank Dr V N Sokolov for useful discussions. We are indebted to the Dirección General
de Ensẽnanza Superior (Spanish Ministry of Education) for sabbatical support (VAK) and for
financial support through grant PB97-0088, and to the UE Training and Mobility of Researchers
Programme through contract ERBFMBXCT970157. One of us (CAV) acknowledges the
support of the Fundación General de la Universidad Carlos III de Madrid.

Appendix. Dimensionless variables and constants

In this appendix we are going to give some numerical values for a GaAs QW layer (see
references [1–3,24]). For a GaAs QW structure, the following values are typically chosen for
the variables involved in our analysis:m = 0.068m0, ε0 = 13.1εv, µn = 8500 cm2 V−1 s−1,
andµp = 400 cm2 V−1 s−1; herem0 is the electron rest mass (m0 = 9.109× 10−31 kg), and
εv the dielectric constant of vacuum (εv = 8.85× 10−12 C V−1 m−1). Considering a QW
of width 2d = 200 Å, a maximum absorptionA0 = 0.05, a value of ¯hω = 1.9 eV, and a
recombination timeτR = 10−10 s, we obtain the numerical results shown in table A1.

Table A1. Typical numerical values of normalizing constants.

Parameter Value

E0 (meV) 5.6
E0 (kV cm−1) 5.6
N0 (cm−2) 4× 1010

D0 (cm2 s−1) 4.5
LD (µm) 0.2
I0/h̄ω (photons cm−2 s−1) 8.1× 1021

I0 (kW cm−2) 2.4
λdB (Å)a 630
a∗ (Å) (effective Bohr radius)b 100
θ 0.05
β 0.05
λ 0.25

a λdB = 2πh̄/
√

2mE0; see [22].
b a∗ = 4πε0h̄

2/(me2); see [22].
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